Safety, Tolerability, and Efficacy of Tinlarebant from a 24-Month, Phase 2 Study in Adolescent Patients Affected by Stargardt Disease

John Grigg

Professor and Head Speciality of Ophthalmology Save Sight Institute, Faculty of Medicine and Health The University of Sydney, Sydney Children's Hospitals Network Westmead

FK Chen	Lions Eye Institute Perth WA
Ta-Ching Chen	National Taiwan University Hospital
RV Jamieson	Eye Genetics Research Unit, Sydney Children's Hospitals Network
H.P.N. Scholl	Department of Ophthalmology, University of Basel, CHE
M Michaelides	Department of Ophthalmology, Moorfields Eye Hospital, London, UK
J Zernant	Department of Ophthalmology, Columbia University, New York, NY
R Allikmets	Department of Ophthalmology, Department of Pathology & Cell Biology, Columbia University, New York, NY
NL Mata	Belite Bio, Inc. San Diego, CA

Characteristics of Autosomal Recessive Stargardt Disease (STGD1)

- STGD1 Mutations in a retina-specific ATP-binding cassette (ABC) transporter gene (*ABCA*4) which encodes a protein (ABCR) involved in removal of vitamin A aldehyde from the retina¹
- Disease Onset Typically during childhood, although diagnosis during adulthood is not uncommon and is generally associated with a less severe disease progression²
- **Pathology** Characterized by
 - excessive accumulation of autofluorescent, cytotoxic, vitamin A byproducts (*bisretinoids*)
 - cellular debris (lipofuscin)
 - which leads to onset/growth of atrophic retinal lesions and loss of vision³

^{1.} Molday RS, et al. The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration. Biochim Biophys Acta. 2009;1791(7):573–83.

[.] Tanna P, et al. Stargardt disease: Clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2017;101(1):25–30.

^{3.} Lambertus S, et al. Early-onset Stargardt disease: Phenotypic and genotypic characteristics. Ophthalmology. 2015;122(2):335-44.

Vitamin A Uptake and the Role of ABCR in the Visual Cycle

- Vitamin A (retinol) transported to eye in a protein complex with RBP4 & Transthyretin (TTR)
- Stra6 receptor on RPE binds specifically to retinol- RBP4- TTR complex
- Internalized retinol joins the visual cycle

Abbreviations: ABCR, ATP-binding cassette retina; AtRDH, all-*trans* retinol dehydrogenase; LRAT, lecithin retinol acyl transferase; RPE65, retinal pigment epithelium protein 65; RBP4, retinol binding protein 4; TTR, transthyretin; 11cRDH, 11-cis retinol dehydrogenase.

Accumulation of Bisretinoids and Retinal Cell Death in STGD1

- Dysfunction of ABCR
 - leads to accumulation of all-trans retinal within photoreceptor outer segments
- Reactivity of all-*trans* retinal promotes
 - formation of retinal dimer lipid complexes
 - deposited into the RPE during normal diurnal phagocytosis⁶
- Within the RPE
 - retinal dimer lipid complexes are converted to cytotoxic bisretinoids (e.g., A2E)
 - promote retinal cell death through diverse mechanisms^{7,8}
- Continued retinol delivery to the eye drives bisretinoid accumulation

Abbreviations: ABCR, ATP-binding cassette retina; AtRDH, all-trans retinol dehydrogenase; LRAT, lecithin retinol acyl transferase; RPE65, retinal pigment epithelium protein 65; RBP4, retinol binding protein 4; TTR, transthyretin; 11cRDH, 11-cis retinol dehydrogenase.

- Sparrow JR, et al. The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res. 2012; 31(2):121-35. 4.
- Parmar VM, et al. A2E-associated cell death and inflammation in retinal pigmented epithelial cells from human induced pluripotent stem cells. Stem Cell Res. 2018 Mar:27:95-104. 5.
- Sparrow JR. Bisretinoids of RPE lipofuscin: trigger for complement activation in age-related macular degeneration. Adv Exp Med Biol. 2010;703:63-74. 6.

Retinal Pigment Epithelium

Therapeutic Approach: Reduce Retinol Delivery to the Eye

- Tinlarebant
 - Tinlarebant
 - binds to RBP4 with a 100-fold greater affinity than retinol
 - does not allow TTR binding
 - reduces retinol delivery to the eye
 - Doesn't impact vitamin A delivery to other tissues

Abbreviations: ABCR, ATP-binding cassette retina; A*t*RDH, all-*trans* retinol dehydrogenase; LRAT, lecithin retinol acyl transferase; RPE65, retinal pigment epithelium protein 65; RBP4, retinol binding protein 4; TTR, transthyretin; 11*c*RDH, 11-*cis* retinol dehydrogenase.

Phase 2 Trial Design

• The Phase 2 study of Tinlarebant in adolescent STGD1 patients is the 24-month extension of a Phase 1b/2 study

Phase 2 Study Design

 Open label study of confirmed STGD1 patients aged 12-18 years; n = 13, 11 from Phase 1b + 2 additional patients

*All subjects showed only questionably decreased autofluorescence (QDAF) lesions at baseline (most were foveal-involved)

Primary Endpoints

- Ocular and systemic safety and tolerability

Secondary Endpoints

- Change in lesion size as assessed by Fundus Autofluorescence (FAF) photography
 - Definitely decreased autofluorescence (DDAF)
 - Questionably decreased autofluorescence (QDAF)
- Change in retinal thickness and morphology by SD-OCT
- Change in retinal sensitivity by microperimetry
- Change in BCVA
- Correlation between reduction in RBP4 level and the rate of DDAF lesion growth

Analysis of *ABCA*4 Mutations in the Phase 2 Study Cohort

- Severe biallelic *ABCA*4 mutations were found in 11 of 13 subjects
- (Subjects 3 and 5 harbored one moderate allele each)

Combined Annotation–Dependent Depletion (CADD)

Variants with CADD score >20 predicted to be among the 1% most deleterious https://cadd.gs.washington.edu/

N/A: Not available

Subject	cDNA change	Protein change	CADD v1.6 ¹	Assessmen t	Function tested <i>in vitro</i>	ClinVar
1	c.1922G>C	p.Cys641Ser	25.7	likely severe		not provided
1	c.2905A>G	p.Lys969Glu	28.9	likely severe		Pathogenic
2	c.768G>T	p.(Leu257Valfs*17)	23.1	severe	yes	Pathogenic/Likely pathogenic
2	c.[1532G>A;6006-1G>C]	p.[Arg511His;?]	15.3; 34	severe		not provided
3	c.4539+2028C>T	p.[=,Arg1514Leufs*36]	1.79	moderate	yes	Pathogenic/Likely pathogenic
3	c.2894A>G	p.Asn965Ser	24.8	severe	yes	Pathogenic
4	c.2576del	p.Gln859Argfs*41	N/A	severe		Pathogenic
4	c.[2588G>C;5603A>T]	p.[Gly863Ala;Asn1868lle]	31; 23.3	moderate/severe	yes; yes	Likely pathogenic
5	c.3260A>G	p.Glu1087Gly	29.5	likely severe		Pathogenic
5	c.5714+5G>A	p.[=,Glu1863Leufs*33]	19.1	moderate	yes	Pathogenic/Likely pathogenic
6	c.5461-10T>C	p.[Thr1821Aspfs*6,Thr1821Valfs*13]	16.8	severe	yes	Pathogenic
6	c.6079C>T	p.Leu2027Phe	27.6	severe	yes	Pathogenic/Likely pathogenic
7	c.634C>T	p.Arg212Cys	26.3	severe	yes	Pathogenic/Likely pathogenic
7	c.2894A>G	p.Asn965Ser	24.8	severe	yes	Pathogenic
8	c.161G>A	p.Cys54Tyr	33	severe	yes	Pathogenic/Likely pathogenic
8	c.4139C>T	p.Pro1380Leu	25.3	moderate/severe	yes	Pathogenic/Likely pathogenic
9	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
9	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance
10	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
10	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance
11	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
11	c.5761G>A	p.Val1921Met	25.5	likely severe		Pathogenic/Likely pathogenic
12	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
12	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance
13	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
13	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance

Analysis of *ABCA*4 Mutations in the Phase 2 Study Cohort

• Subjects 1, 3, 4, 12, and 13

- Did not develop atrophic lesions during the Phase 2 study
- Despite harboring severe or likely severe alleles

Combined Annotation–Dependent Depletion (CADD)

Variants with CADD score >20 predicted to be among the 1% most deleterious https://cadd.gs.washington.edu/

N/A: Not available

Subject	cDNA change	Protein change	CADD v1.6 ¹	Assessmen t	Function tested <i>in vitro</i>	ClinVar
1	c.1922G>C	p.Cys641Ser	25.7	likely severe		not provided
1	c.2905A>G	p.Lys969Glu	28.9	likely severe		Pathogenic
2	c.768G>T	p.(Leu257Valfs*17)	23.1	severe	yes	Pathogenic/Likely pathogenic
2	c.[1532G>A;6006-1G>C]	p.[Arg511His;?]	15.3; 34	severe		not provided
3	c.4539+2028C>T	p.[=,Arg1514Leufs*36]	1.79	moderate	yes	Pathogenic/Likely pathogenic
3	c.2894A>G	p.Asn965Ser	24.8	severe	yes	Pathogenic
4	c.2576del	p.Gln859Argfs*41	N/A	severe		Pathogenic
4	c.[2588G>C;5603A>T]	p.[Gly863Ala;Asn1868lle]	31; 23.3	moderate/severe	yes; yes	Likely pathogenic
5	c.3260A>G	p.Glu1087Gly	29.5	likely severe		Pathogenic
5	c.5714+5G>A	p.[=,Glu1863Leufs*33]	19.1	moderate	yes	Pathogenic/Likely pathogenic
6	c.5461-10T>C	p.[Thr1821Aspfs*6,Thr1821Valfs*13]	16.8	severe	yes	Pathogenic
6	c.6079C>T	p.Leu2027Phe	27.6	severe	yes	Pathogenic/Likely pathogenic
7	c.634C>T	p.Arg212Cys	26.3	severe	yes	Pathogenic/Likely pathogenic
7	c.2894A>G	p.Asn965Ser	24.8	severe	yes	Pathogenic
8	c.161G>A	p.Cys54Tyr	33	severe	yes	Pathogenic/Likely pathogenic
8	c.4139C>T	p.Pro1380Leu	25.3	moderate/severe	yes	Pathogenic/Likely pathogenic
9	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
9	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance
10	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
10	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance
11	c.1804C>T	p.Arg602Trp	p.Arg602Trp 24.7 severe		yes	Pathogenic/Likely pathogenic
11	c.5761G>A	p.Val1921Met	25.5	likely severe		Pathogenic/Likely pathogenic
12	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
12	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance
13	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
13	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance

Analysis of *ABCA*4 Mutations in the Phase 2 Study Cohort

- Subjects 9 & 10 (brothers)
- Subjects 12 & 13 (brother/sister)
 - Harbor identical mutations
 - Different phenotypes

Combined Annotation–Dependent Depletion (CADD)

Variants with CADD score >20 predicted to be among the 1% most deleterious https://cadd.gs.washington.edu/

N/A: Not available

Subject	cDNA change	Protein change	CADD v1.6 ¹	Assessmen t	Function tested <i>in vitro</i>	ClinVar
1	c.1922G>C	p.Cys641Ser	25.7	likely severe		not provided
1	c.2905A>G	p.Lys969Glu	28.9	likely severe		Pathogenic
2	c.768G>T	p.(Leu257Valfs*17)	23.1	severe	yes	Pathogenic/Likely pathogenic
2	c.[1532G>A;6006-1G>C]	p.[Arg511His;?]	15.3; 34	severe		not provided
3	c.4539+2028C>T	p.[=,Arg1514Leufs*36]	1.79	moderate	yes	Pathogenic/Likely pathogenic
3	c.2894A>G	p.Asn965Ser	24.8	severe	yes	Pathogenic
4	c.2576del	p.Gln859Argfs*41	N/A	severe		Pathogenic
4	c.[2588G>C;5603A>T]	p.[Gly863Ala;Asn1868lle]	31; 23.3	moderate/severe	yes; yes	Likely pathogenic
5	c.3260A>G	p.Glu1087Gly	29.5	likely severe		Pathogenic
5	c.5714+5G>A	p.[=,Glu1863Leufs*33]	19.1	moderate	yes	Pathogenic/Likely pathogenic
6	c.5461-10T>C	p.[Thr1821Aspfs*6,Thr1821Valfs*13]	16.8	severe	yes	Pathogenic
6	c.6079C>T	p.Leu2027Phe	27.6	severe	yes	Pathogenic/Likely pathogenic
1	c.634C>T	p.Arg212Cys	26.3	severe	yes	Pathogenic/Likely pathogenic
1	c.2894A>G	p.Asn965Ser	24.8	severe	yes	Pathogenic
8	c.161G>A	p.Cys54Tyr	33	severe	yes	Pathogenic/Likely pathogenic
8	c.4139C>T	p.Pro1380Leu	25.3	moderate/severe	yes	Pathogenic/Likely pathogenic
9	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
9	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance
10	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
10	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance
11	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
11	c.5761G>A	p.Val1921Met	25.5	likely severe		Pathogenic/Likely pathogenic
12	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
12	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance
13	c.1804C>T	p.Arg602Trp	24.7	severe	yes	Pathogenic/Likely pathogenic
13	c.5645T>C	p.Met1882Thr	24.8	likely severe		Uncertain significance

Visual acuity outcomes - background

- A subgroup of 6 subjects
 - mean bilateral BCVA loss of ~10 letters/year prior to enrollment
- The natural history would predict significant visual loss over 2 yrs
- Foveal-involved QDAF leads to visual acuity compromise

Subject	Race	Gender	Age at First Exam	Age at Enrollment	Disease Duration (yrs)	BCVA at Diagnosis Exam (Right / Left)	BCVA at Enrollment (Right/Left)	Annual Letter Loss (Right/Left)
1	Caucasian	Female	13	15	2	36/37	34/36	-
2	Caucasian	Female	11	12	1	33/39	40/42	-
3	Asian/ Caucasian	Female	13	13	<1	49/44	49/48	-
4	Caucasian	Female	14	15	1	39/44	45/45	-
5*	Caucasian	Female	12	13	1	70/61	45/55	25/6
6*	Caucasian	Female	13	18	5	70/65	35/36	7/6
1	Caucasian	Male	15	15	<1	59/75	69/40	-
8*	Caucasian	Male	8	13	5	57/57	31/31	5/5
9	Asian	Male	12	13	1	50/35	45/35	-
10*	Asian	Male	11	12	1	50/59	45/35	5/24
11*	Asian	Female	13	14	1	59/59	50/50	9/9
12	Asian	Female	10	18	8	35/44	35/35	-
13*	Asian	Male	10	12	2	59/59	35/35	12/12

*Subjects showing annual bilateral BCVA loss prior to Phase 2 enrollment; BCVA loss for subjects with <1 year disease not considered

Change in Best Corrected Visual Acuity

- Visual acuity was stabilized during the study with a mean loss of 5 letters in the cohort over 24 months of treatment ٠ (equivalent to 2.5 letters lost/year, left panel)*
- For the 6 subjects: •
 - Pre-enrollment mean bilateral loss of ~10 letters/year •
 - 24-month data mean BCVA loss was 3.8 letters (equivalent to 1.9 letters lost/year, right panel)* •

Subjects with Bilateral VA Loss Pre-Enrollment

The University of Sydney

24-Month Change in QDAF and DDAF Lesion Size

- Transition to, and growth of, incident DDAF in cohort
- In 5 of 12 subjects (42%),
 - no change in QDAF lesion size
 - no incident DDAF lesion growth observed
- In 7 of 12 subjects (58%)
 - DDAF lesions were relatively small
 - DDAF occurred with QDAF lesions
 - mean DDAF lesion size growth among all subjects over 24 months was 1.2 mm²
- Only 1 subject (#5) showed a new DDAF lesion (0.5 mm²) which was outside of the QDAF lesion area that was identified at Baseline
- Sibling subjects with identical ABCA4 mutations and similar disease duration (9, 10, 13) showed different disease progression based on BCVA loss and QDAF/DDAF lesion growth

Mean Growth Rate of Incident DDAF Lesions & Comparison to Natural History

- Incident DDAF lesions appeared in 7 subjects at different timepoints over 24 months; 4 of these subjects developed DDAF lesions after Month 12
- The mean DDAF lesion growth at Month 24 was 0.51 \pm 0.4 mm²
- Comparison of the mean DDAF lesion growth in Tinlarebant-treated subjects to natural history data from patients possessing similar baseline characteristics (from the ProgStar study) showed significantly lower growth in Tinlarebant-treated subjects (p<0.001)

Measurement of DDAF - Region Finder

- Relies heavily on the grader's ability to visually determine the types and boundaries of areas with different levels of discderived autofluorescence (DDAF, DAF, QDAF).
- There is intra- and inter-grader variability
 - due to subjective assessment of lesion grayscale compared to the optic disc.
- General assessment without specific focus on key regions
 - potentially leading to less precise measurements.

Novel Lesion Size Quantification Method

- Utilizes mathematical classification of lesions based on the proximity of their gray values to that of the optic disc, reducing subjective bias.
- Focuses on specific regions (macular area within central 6mm diameter and smaller zones of 1mm and 3mm ETDRS), enhancing the accuracy of localization and quantification.
- Independent of initial lesion size, employing a pixel-based method that consistently evaluates the percentage of a region affected at specified DAF thresholds.

DAF @ >90 %

A Newly Developed Grading Algorithm Reveals Atrophic Macular Lesions

- FAF Analysis using new grading methodology showed atrophic lesions within the macula (6 mm outer ring) in 12 eyes of 8 subjects at Baseline
- In these subjects, growth of atrophic macular lesions was stabilized from Months 16 24
 - left panel; a 3rd order polynomial function of the lesion area data is shown

Mean Change in Area of Macular Involvement

• The extent of macular lesion involvement was $\leq 7\%$ involvement over 24 Months (right panel)

Mean Change in Percent of Macular Involvement

Drug-related Adverse Events (AEs)

Adverse Events	Severity	Frequency (# and % of patients)
Xanthopsia/ Chromatopsia	Mild	10/13 (76.9%)
Delayed Dark Adaptation	Mild	9/13 (69.2%)
Night Vision Impairment	Mild	1/13 (7.7%)
Increasing error score in FM100	Mild	1/13 (7.7%)
Intermittent headaches	Mild	2/13 (15.4%)

- Tinlarebant (5 mg p.o., daily) was safe and well tolerated over 24 months
- No systemic drug-related AEs, no clinically significant findings, No severe or moderate drug related AEs were reported, and no AEs required discontinuation of treatment

PK/PD Profile of Tinlarebant (5 mg/day, p.o.)

- ↑ tinlarebant in blood (blue line) → ↓ RBP4 (red line)
- The 5 mg daily dose reduced RBP4 by a mean ~80%
- Cessation of tinlarebant at Month 24 corresponded with increased RBP4 which returned to 87% of the baseline value over 28 days

Tinlarebant Phase 2 Clinical Study - Summary

- Tinlarebant (5 mg/day) produced a sustained reduction of RBP4 (~80%) over 24 months, which was reversible after 28 days of drug cessation, and was found to be safe and well tolerated
- No incident DDAF lesions were formed in 5 of 12 subjects (42%) over 24 months despite severity of ABCA4 mutations
- Mean incident DDAF lesion growth rate in 7 of 12 subjects was significantly lower (~50%) than the natural history growth rate observed in adolescent STGD1 subjects with similar baseline characteristics (p<0.001)
- Profound slowing of growth during the second year. In subjects with atrophic lesion involvement within the macula at Baseline
- Sibling subjects with identical *ABCA*4 mutations showed different rates of QDAF and DDAF lesion growth
- Best corrected visual acuity was stabilized over 24 months with a mean loss of 2.5 letters/year
- Delayed dark adaptation and chromatopsia were the most common drug related ophthalmic AEs and were reported as mild and transient; there were no drug-related systemic AEs
- Collectively, data from the Phase 2 study indicate that reduction of retinol delivery to the eye with Tinlarebant is a
 promising approach for the treatment of STGD1